A combined experimental-computational approach is used for the analysis of hygrothermal performance of a brick wall provided with interior thermal insulation system. A 2D laboratory experiment is performed to determine temperature and moisture fields in a characteristic segment of the envelope over a sufficiently long period including cold winter months. Then, a computational model of moisture and heat transport is developed, using an integral two-phase balance equation capable of distinguishing between the particular phases of water and an enthalpy-based heat balance equation. A 2D computational representation of the experiment is used for model calibration and identification of unknown parameters, resulting in a very good agreement of experimental and calculated fields, with R 2 between 0.9687 and 0.9888. The calibrated model is subsequently used for a long-term hygrothermal assessment of the studied detail to demonstrate the functionality of the interior thermal insulation system, as well as the applicability of the developed model.