The development of highly precise and rapid biological photonic-integrated chips with single-base resolution for target gene detection holds immense potential to revolutionize genetic diagnostics and nonlinear optical devices. Our recent study presents the design of a single-base resolution photonic-integrated chip (SRPIC) with multichannel biosensing capabilities, enabling discrimination between gene segment sequences differing by a single nucleotide at sample concentrations below 1 fM. Through the utilization of hybrid dielectric−metal nanocavity arrays, the SRPIC established an efficient biosensing platform by motivating light-biological matter coupling behavior. This accomplishment represents an extraordinary 10 4 -fold increase in the limit of detection (LOD) compared with the CRISPR-HOLMES technique, exhibiting nearly impeccable precision during clinical testing. Our research highlights the potential of SRPIC as a powerful tool for the development of high-performance photonic-integrated chips capable of achieving multichannel single-base resolution biosensing, with each channel representing the detection of a single virus.