In the brain, oxytocin (OT) neurons make direct connections with discreet regions to regulate social behavior and diverse physiological responses. Obtaining an integrated neuroanatomical understanding of pleiotropic OT functions requires comprehensive wiring diagram of OT neurons. Here, we have created a whole-brain map of distribution and anatomical connections of hypothalamic OT neurons, and their relationship with OT receptor (OTR) expression. We used our brain-wide quantitative mapping at cellular resolution combined with a 2D flatmap to provide an intuitive understanding of the spatial arrangements of OT neurons. Then, we utilized knock-in Ot-Cre mice injected with Cre dependent retrograde monosynaptic rabies viruses and anterograde adeno associated virus to interrogate input-output patterns. We find that brain regions with cognitive functions such as the thalamus are reciprocally connected, while areas associated with physiological functions such as the hindbrain receive unidirectional outputs. Lastly, comparison between OT output and OTR expression showed no significant quantitative correlation, suggesting that OT transmission mostly occurs through indirect pathways. In summary, our OT wiring diagram provides structural and quantitative insights of distinct behavioral functions of OT neurons in the brain.