To a large degree, the attraction of Big Data lies in the variety of its heterogeneous multi-thematic and multidimensional data sources and not merely its volume. To fully exploit this variety, however, requires conflation. This is a two step process. First, one has to establish identity relations between information entities across the different data sources; and second, attribute values have to be merged according to certain procedures which avoid logical contradictions. The first step, also called matching, can be thought of as a weighted combination of common attributes according to some similarity measures. In this work, we propose such a matching based on multiple attributes of Points of Interests (POI) from the Location-based Social Network Foursquare and the Yelp local directory service. While both contain overlapping attributes that can be use for matching, they have specific strengths and weaknesses which makes their conflation desirable. For instance, Foursquare offers information about user check-ins to places, while Yelp specializes in user-contributed reviews. We present a weighted multi-attribute matching strategy, evaluate its performance, and discuss application areas that benefit from a successful matching. Finally, we also outline how the established POI matches can be stored as Linked Data on the Semantic Web. Our strategy can automatically match 97% of randomly selected Yelp POI to their corresponding Foursquare entities.