Abstract:A linear rank inequality is a linear inequality that holds by dimensions of vector spaces over any finite field. A characteristic-dependent linear rank inequality is also a linear inequality that involves dimensions of vector spaces but this holds over finite fields of determined characteristics, and does not in general hold over other characteristics. In this paper, using as guide binary matrices whose ranks depend on the finite field where they are defined, we show a theorem which explicitly produces charact… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.