This study investigates the effects of incorporating a CdZnO layer in place of the conventional InGaN layer in an AlGaN/InGaN/GaN/AlGaN/SiC high-electron mobility transistor (HEMT) structure. We examine the resulting characteristics and assess the potential of high-power HEMT applications, including high-power switching converters, through simulation analysis. Both structures demonstrate increased drain current and transconductance with increasing Al content in the barrier layer. However, HEMTs with a CdZnO layer exhibit higher drain current compared to those with an InGaN layer at the same Al content. The breakdown voltage decreases rapidly with increasing Al content, attributed to changes in electric field distribution. HEMTs with a CdZnO/GaN channel exhibit a slightly higher breakdown voltage (~795 V) compared to those with an InGaN/GaN channel (~768 V) at a lower Al content of x = 0.10. These results suggest that CdZnO-based HEMTs have significant potential for high-power, high-frequency applications.