In this paper, a new analysis for existence, uniqueness, and regularity of solutions to a time-dependent Kohn-Sham equation is presented. The Kohn-Sham equation is a nonlinear integral Schrödinger equation that is of great importance in many applications in physics and computational chemistry. To deal with the time-dependent, nonlinear and non-local potentials of the Kohn-Sham equation, the analysis presented in this manuscript makes use of energy estimates, fixed-point arguments, regularization techniques, and direct estimates of the non-local potential terms. The assumptions considered for the time-dependent and nonlinear potentials make the obtained theoretical results suitable to be used also in an optimal control framework.