The structures of the simplest aromatic clusters, benzene clusters (C(6)H(6))(n), are not well elucidated. In the present study, benzene clusters (C(6)H(6))(n) (n ≤ 30) were investigated with the all-atom optimized parameters for liquid simulation (OPLS) potential. The global minima and low-lying minima of the benzene clusters were searched with the heuristic method combined with geometrical perturbations. The structural features and growth sequence of the clusters were examined by carrying out local structure analyses and structural similarity evaluation with rotational constants. Because of the anisotropic interaction between the benzene molecules, the local structures consisting of 13 molecules are considerably deviated from regular icosahedron, and the geometries of some of the clusters are inconsistent with the shapes constructed by the interior molecules. The distribution of the angle between the lines normal to two neighboring benzene rings is anisotropic in the clusters, whereas that in the liquid benzene is nearly isotropic. The geometries and energies of the low-lying configurations and the saddle points between them suggest that most of the configurations previously detected in supersonic expansions take different orientations for one to four neighboring molecules.