This article is aimed to reveal the dynamic response of layered graded metallic foam under impact loading using a three-dimensional mesoscopic model. First, a mesoscopic model for closed-cell metallic foam is proposed based on the X-ray computed tomography images. Second, a numerical analysis approach is presented and validated with test data. Third, it studies the dynamic behavior of the layered graded metallic foam under impact loading numerically. The metallic foam specimen is composed layer by layer. The porosity, which is a fraction of the voids volume over the total volume, is different with each other for the layers. Simulations are conducted to the specimen with increasing and decreasing porosity arrangement. Results show that the layer arrangement is critical to the dynamic properties. The mesoscopic deformation of cell walls and the energy absorption capability are also affected significantly. This article gives insights into the mechanical properties and mesoscopic deformation of layered graded metallic foam.