A group of novel 2-aryl imidazole derivatives were synthesized and characterized by NMR spectra, X-ray, mass and CHN analysis. An excited state intramolecular proton transfer (ESIPT) process in hydroxy imidazoles (dmip and dmtip) have been studied using emission spectroscopy and it was detected that the two distinct ground state rotamers of I and II are responsible for the normal and the tautomer emission respectively. In hydrocarbon solvent, the tautomer emission predominates over the normal emission for both dmip and dmtip. This reveal that rotamer II is responsible for the tautomer emission and it is stabler than rotamer I which causes the normal emission. In alcoholic solvent like ethanol, a dramatic enhancement of normal emission is observed which was due to increased solvation, the more polar rotamer I become stabler than rotamer II. In dioxane-water mixtures it is observed that the addition of water inhibits the ESIPT process due to the formation of the intermolecular hydrogen bonding involving water. DFT calculations on energy, dipole moment, charge distribution of the rotamers in the ground and excited states of the imidazole derivatives were performed and discussed. PES calculation indicates that the energy barrier for the interconversion of two rotamers is too high in the excited state than the ground state.