2017
DOI: 10.1007/s10439-017-1825-5
|View full text |Cite
|
Sign up to set email alerts
|

A Theoretical Study on Inhibition of Melanoma with Controlled and Targeted Delivery of siRNA via Skin Using SPACE-EGF

Abstract: Melanoma is a potentially lethal skin cancer with high mortality rate. Recently, the peptide-mediated transdermal delivery of small interference RNA (siRNA) emerges as a promising strategy to treat melanoma by inducing the apoptosis of tumor cells, but the related theoretical model describing the delivery of siRNA under the effect of SPACE-EGF, the growth inhibition of melanoma and the dynamic expanding of the bump on the skin due to the growth of melanoma has not been reported yet. In this article, a theoreti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(1 citation statement)
references
References 59 publications
0
1
0
Order By: Relevance
“…However, the transport from the blood vessels or skin surface to the melanoma cells depends on the diffusion coefficient of the microanatomical structure. Drug delivery models are available for both the penetration of spherical tumors with melanin-binding antibodies for radioimmunotherapy [160] and SPACE-EGF mediated transdermal delivery of siRNA against the MYC proto-oncogene, bHLH transcription factor (MYC) [161]. However, the impact of biomechanics and tumor physiology on drug delivery is not considered by those models but discussed for MU89 melanoma in mice [162,163].…”
Section: Drug Delivery Modelsmentioning
confidence: 99%
“…However, the transport from the blood vessels or skin surface to the melanoma cells depends on the diffusion coefficient of the microanatomical structure. Drug delivery models are available for both the penetration of spherical tumors with melanin-binding antibodies for radioimmunotherapy [160] and SPACE-EGF mediated transdermal delivery of siRNA against the MYC proto-oncogene, bHLH transcription factor (MYC) [161]. However, the impact of biomechanics and tumor physiology on drug delivery is not considered by those models but discussed for MU89 melanoma in mice [162,163].…”
Section: Drug Delivery Modelsmentioning
confidence: 99%