Remote sensing technology is an essential link in the global monitoring of the ocean surface and radars are efficient sensors for detecting maritime pollution. When used operationally by authorities, a tradeoff must usually be made between the covered area and the quantity of information collected by the radar. To identify the most appropriate imaging mode, a methodology based on Receiver Operating Characteristic (ROC) curve analysis has been applied to an original dataset collected by two airborne systems operating at L-band, both characterized by a very low instrument noise floor. The dataset was acquired during controlled releases of mineral and vegetal oil at sea. Various polarization-dependent quantities are investigated and their ability to detect slickcovered area is assessed. A relative ordering of the main polarimetric parameters is reported in this paper. When the sensor has a sufficiently low noise floor, HV is recommended because it provides SAR Imagery for Detecting Sea Surface Slicks: Performance Assessment of Polarimetric Parameters the strongest slick-sea contrast. Otherwise VV is found to be the most relevant parameter for detecting slicks on the sea surface. Among all the investigated quad-polarimetric settings, no significant added-value compared to single-pol data was found. More specifically, it is demonstrated, by increasing the instrument noise level, that the studied polarimetric quantities which combine the four polarimetric channels have performances of detection mainly driven by the NESZ. This result, obtained by progressively adding noise to the raw SAR data, indicates that the polarimetric discrimination between clean sea and polluted area results mainly from the differentiated behavior between single-bounce scattering and noise.