2021
DOI: 10.1002/htj.22162
|View full text |Cite
|
Sign up to set email alerts
|

A thermal nonequilibrium model to natural convection inside non‐Darcy porous layer surrounded by horizontal heated plates with periodic boundary temperatures

Abstract: This article displays a numerical investigation on natural convection within non‐Darcy porous layer surrounded by two horizontal surfaces having sinusoidal temperature profiles with difference in phase and wave number. The Darcy–Brinkman–Forchheimer model and local thermal nonequilibrium condition have been employed. Simulations have been performed for wide ranges of inertia coefficient (10–4 ≤ Fs/Pr* ≤ 10–2), thermal conductivity ratio (0.1 ≤ K r ≤ 100), phase difference (0 ≤ β ≤ π), modified Rayleigh number … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 16 publications
(1 citation statement)
references
References 50 publications
0
1
0
Order By: Relevance
“…For porous medium region 58–60 : ux+vy=0, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0,$ (ρCp)f][uTfx+vTfy=ϕkf][2Tfx2+2Tfy2+h(TSTf), ${(\rho {C}_{p})}_{f}\left[u\frac{\partial {T}_{f}}{\partial x}+v\frac{\partial {T}_{f}}{\partial y}\right]=\phi {k}_{f}\left[\frac{{\partial }^{2}{T}_{f}}{\partial {x}^{2}}+\frac{{\partial }^{2}{T}_{f}}{\partial {y}^{2}}\right]+h({T}_{S}-{T}_{f}),$ (1ϕ)kS][2TSx2+2TSy2+h(TfTS)=0, $(1-\phi ){k}_{S}\left[\frac{{\partial }^{2}{T}_{S}}{\partial {x}^{2}}+\frac{{\partial }^{2}{T}_{S}}{\partial {y}^{2}}\right]+h({T}_{f}-{T}_{S})=0,$ μK][uyvx+ρbK][y(Vu)x(Vv)=ρfgβTf…”
Section: Modelmentioning
confidence: 99%
“…For porous medium region 58–60 : ux+vy=0, $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0,$ (ρCp)f][uTfx+vTfy=ϕkf][2Tfx2+2Tfy2+h(TSTf), ${(\rho {C}_{p})}_{f}\left[u\frac{\partial {T}_{f}}{\partial x}+v\frac{\partial {T}_{f}}{\partial y}\right]=\phi {k}_{f}\left[\frac{{\partial }^{2}{T}_{f}}{\partial {x}^{2}}+\frac{{\partial }^{2}{T}_{f}}{\partial {y}^{2}}\right]+h({T}_{S}-{T}_{f}),$ (1ϕ)kS][2TSx2+2TSy2+h(TfTS)=0, $(1-\phi ){k}_{S}\left[\frac{{\partial }^{2}{T}_{S}}{\partial {x}^{2}}+\frac{{\partial }^{2}{T}_{S}}{\partial {y}^{2}}\right]+h({T}_{f}-{T}_{S})=0,$ μK][uyvx+ρbK][y(Vu)x(Vv)=ρfgβTf…”
Section: Modelmentioning
confidence: 99%