2022
DOI: 10.3390/su14106373
|View full text |Cite
|
Sign up to set email alerts
|

A Thermodynamics-Oriented and Neural Network-Based Hybrid Model for Military Turbofan Engines

Abstract: Traditional thermodynamic models for military turbofans suffer from non-convergence and inaccuracy due to inaccuracy of the component maps and the instability of the iterative process. To address these problems, a thermodynamically oriented and neural network-based hybrid model for military turbofans is proposed. Different from iteration-based thermodynamic models, the proposed hybrid model transforms the iteration process into a multi-objective optimization and training process for a component-level neural ne… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2025
2025

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 28 publications
0
0
0
Order By: Relevance