Spatial mapping of potential geothermal areas is an effective tool for a preliminary investigation and the development of a clean and renewable energy source around the globe. Specific locations within the Earth’s crust display some manifestations of sub-surface geothermal occurrences, such as hot springs, a volcanic plug, mud volcanoes, and hydrothermal alterations, that need to be investigated further. The present area of investigations also reveals some of these manifestations. However, no attempt was made to examine the prospectivity of this terrain using the efficient GIS-based multicriteria evaluation (MCE) within the scope of the Analytic hierarchy process (AHP). The integration of remote sensing, Geographic information system (GIS), and other geophysical methods (Magnetic and gravity) was performed to map the promising geothermal areas. Multiple input data sets such as aero-magnetic, aero-gravity, aero-radiometric, digital elevation model (DEM), geological map, and Landsat-8 Operational Land Imager (OLI) data were selected, processed, and use to generate five thematic layers, which include heat flow, temperature gradients, integrated lineaments, residual gravity, and lithology maps. The five thematic layers were standardized and synthesized into a geothermal prospectivity map. The respective ranks and weight of the thematic layers and their classes were assigned based on expert opinion and knowledge of the local geology. This research aims to apply an efficient method to evaluate the factors influencing the geothermal energy prospects, identify and map prospective geothermal regions, and, finally, create a geothermal prospectivity model.