Organic luminogens constitute promising prototypes for various optoelectronic applications. Since gaining distinct color emissions normally requires the alternation of the conjugated backbone, big issues remain in material synthetic cost and skeleton compatibility while pursuing full‐color luminescence. Upon a facile one‐step coupling, three simple but smart perchalcogenated (O, S, and Se) arenes are synthesized. They exhibit strong luminescent tricolor primaries (i.e., blue, green, and red, respectively) in the solid state with a superior quantum yield up to >40% (5–10 times higher than that in corresponding solutions). The properties originate from a fluorescence–phosphorescence–phosphorescence triple‐channel emission effect, which is regulated by S and Se heavy atoms–dependent intersystem crossing upon molecular packing, as well as Se–Se atom interaction–caused energy splittings. Consequently, full‐color luminescence, including a typical white‐light luminescence with a Commission Internationale de I'Eclairage coordinate of (0.30, 0.35), is realized by complementarily incorporating these tricolor luminescent materials in the film. Moreover, mechanochromic luminescent color conversions are also observed to achieve the fine‐tuning of the luminescent tints. This strategy can be smart to address full‐color luminescence on the same molecular skeleton, showing better material compatibility as an alternative to the traditional multiple‐luminophore engineering.