Three-way clustering uses core region and fringe region to describe a cluster, which divide the dataset into three parts. The division helps identify the central core and outer sparse regions of a cluster. One of the main challenges in three-way clustering is the meaningful construction of the two sets. Aimed at handling high-dimensional data and improving the stability of clustering, this paper proposes a novel three-way clustering method. The proposed method uses dimensionality reduction techniques to reduce data dimensions and eliminate noise. Based on the reduced dataset, random sampling and feature extraction are performed multiple times to introduce randomness and diversity, enhancing the algorithm’s robustness. Ensemble strategies are applied on these subsets, and the k-means algorithm is utilized to obtain multiple clustering results. Based on these results, we obtain co-association frequency between different samples and fused clustering result using the single-linkage method of hierarchical clustering. In order to describe the core region and fringe region of each cluster, the similar class of each sample is defined by co-association frequency. The lower and upper approximations of each cluster are obtained based on similar class. The samples in the lower approximation of each cluster belong to the core region of the cluster. The differences between lower and upper approximations of each cluster are defined as fringe region. Therefore, a three-way explanation of each cluster is naturally formed. By employing various UC Irvine Machine Learning Repository (UCI) datasets and comparing different clustering metrics such as Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and Accuracy (ACC), the experimental results show that the proposed strategy is effective in improving the structure of clustering results.