2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT) 2018
DOI: 10.1109/icalt.2018.00052
|View full text |Cite
|
Sign up to set email alerts
|

A Time Series Classification Method for Behaviour-Based Dropout Prediction

Abstract: Students' dropout rate is a key metric in online distance learning courses such as MOOCs. We propose a timeseries classification method to construct data based on students' behavior and activities on a number of online distance learning modules. Further, we propose a dropout prediction model based on the time series forest (TSF) classification algorithm. The proposed predictive model is based on interaction data and is independent of learning objectives and subject domains. The model enables prediction of drop… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
20
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 36 publications
(22 citation statements)
references
References 10 publications
0
20
0
2
Order By: Relevance
“…We prune all patient trajectories including zero events, which results in a final set of 65k trajectories. For each dataset, as suggested in [9], we perform a daily grouping of events concerning each individual (student or patient). Therefore, we represent each individual's trajectory with a time-matrix T ∈ R ℓ, where ℓ is the length of the adopted time-window in days and is the number of different events types (i.e., features) available in the dataset.…”
Section: Evaluation Methodology 21 Datasetsmentioning
confidence: 99%
See 1 more Smart Citation
“…We prune all patient trajectories including zero events, which results in a final set of 65k trajectories. For each dataset, as suggested in [9], we perform a daily grouping of events concerning each individual (student or patient). Therefore, we represent each individual's trajectory with a time-matrix T ∈ R ℓ, where ℓ is the length of the adopted time-window in days and is the number of different events types (i.e., features) available in the dataset.…”
Section: Evaluation Methodology 21 Datasetsmentioning
confidence: 99%
“…Ensembles. We use a Random Forest (RF) with bootstrapped samples and the Gini impurity to evaluate the splits [8,9]. Next, Kotsiantis et al [12] construct an ad-hoc ensemble mechanism -hereafter KENS -with majority voting as the consensus function.…”
Section: Methodsmentioning
confidence: 99%
“…Selain itu, fitur interaksi juga dapat disajikan dalam bentuk sekuensial, seperti halnya deret waktu, sehingga prediksi kinerja atau kecenderungan mahasiswa melakukan drop out dapat dilakukan secara harian atau mingguan. Fitur sekuensial yang digunakan dalam beberapa literatur sangat bervariasi, yaitu jumlah klik harian dari semua sumber daya VLE [14], jumlah klik pada satu sumber daya VLE tertentu (Forum atau OUcontent atau resource VLE) [8], dan ringkasan dari semua sumber daya VLE (setiap sumber daya VLE memiliki atribut tersendiri) dalam mingguan [7]. Di samping itu, untuk meningkatkan kinerja, fitur sekuensial dengan fitur tabel demografis bisa digabungkan [14].…”
Section: B Fitur Yang Digunakan Pada Oulad (P2)unclassified
“…Metode pembelajaran mesin yang digunakan untuk melakukan analisis pembelajaran dalam pengolahan OULAD sangat bervariasi, antara lain Decision Tree (DT) [5], [9]- [12], [15], [16]; Multilayer Perceptron (MLP)/Artificial Neural Network (ANN) [17], seperti pada [10], [13]; Support Vector Machine (SVM) [18], seperti pada [5], [9], [10]; Logistic Regression (LR) [15], seperti pada [5], [9]; Long Short-Term Memory (LSTM) [19], seperti pada [7], [14]; Gated Recurrent Unit (GRU) [20]; Random Forest (RF) [5], [9]; Adaptive RF (ARF) [21]; Distributed RF (DRF), Gradient Boosting Machine (GBM), dan Generalized Linear Model (GLM) [22]; Gaussian Mixture Models (GMM) [23], seperti pada [6]; dan Time Series Forest (TSF) [24], seperti pada [8]. Selain itu, ada juga yang mengombinasikan dengan metode Principal Component Analysis (PCA) untuk mereduksi fitur sebelum diproses dengan algoritme pembelajaran mesin [5] dan mengombinasikan LSTM dengan Convolutional Neural Network (CNN) [25], seperti pada [14].…”
Section: Model Pembelajaran Mesin Atau Metode Yang Digunakan Pada unclassified
“…Behaviour analysis and prediction could be used in many fields of real life, for example, in the educational domain: predicting students' progress, trends in a particular subject, evaluation of a course/teacher [27][28][29][30], and dropout rate in an institute [31]. Researchers also study classification and prediction of customer shopping trends concerning a particular product [32], which is of prime importance in e-business and e-commerce.…”
Section: Literature Reviewmentioning
confidence: 99%