Silicon photomultipliers (SiPMs) offer advantages such as lower relative cost, smaller size, and lower operating voltages compared to photomultiplier tubes. A SiPM’s readout circuit topology can significantly affect the characteristics of an imaging array. In nuclear imaging and detection, energy, timing, and position are the primary characteristics of interest. Nuclear imaging has applications in the medical, astronomy, and high energy physics fields, making SiPMs an active research area. This work is focused on the circuit topologies required for nuclear imaging. We surveyed the readout strategies including the front end preamplification topology choices of transimpedance amplifier, charge amplifier, and voltage amplifier. In addition, a review of circuit topologies suitable for energy, timing, and position information extraction was performed along with a summary of performance limitations and current challenges.