2023
DOI: 10.1007/s42979-023-02104-5
|View full text |Cite
|
Sign up to set email alerts
|

A Tool to Combine Expert Knowledge and Machine Learning for Defect Detection and Root Cause Analysis in a Hot Strip Mill

Samuel Latham,
Cinzia Giannetti

Abstract: Width-related defects are a common occurrence in the Hot Strip Mill process which can lead to extra processing, concessions, or scrapping. The detection and Root Cause Analysis of these defects is a largely manual process and is vulnerable to several negative factors including human error, late feedback, and knock-on effects in successive steel strip products. Automated tools which utilize Artificial Intelligence and Machine Learning for defect detection and Root Cause Analysis in hot rolling have not yet been… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 49 publications
0
0
0
Order By: Relevance