In this study we focus on distress events of European banks over the period of 1990-2015, using unbalanced panel of 3,691 banks. We identify 132 distress events, which include actual bankruptcies as well as bailout cases. We apply CAMEL-like bank-level variables and control macroeconomic variables (GDP, inflation, unemployment rate). The analysis is based on traditional logistic regression and k-means clustering. We find, that the probability of distress is connected with macroeconomic conditions via regional grouping (clustering). Bank-level variables that were stable predictors of distress from 1 to 4 years prior to event are equity to total assets ratio (leverage) and loans to funding (liquidity). From macroeconomic factors, the GDP growth is a reasonable variable, however with differentiated impact: for 1 year distance high distress probability is connected with low GDP growth, but for 2, 3 and 4 year distance: high distress probability is conversely connected with high GDP growth. This shows the changing role of macroeconomic environment and indicates the potential impact of favorable macroeconomic conditions on building-up systemic problems in the banking sector.FOE 6(345) 2019 www.czasopisma.uni.lodz.pl/foe/ ale dla 2, 3 i 4 lat przed bankructwem wysokie ryzyko bankructwa jest związane z wysoką dynamika PKB, czyli jest to zależność odwrotna. Pokazuje to zmienną rolę otoczenia makroekonomicznego i wskazuje na potencjalny wpływ sprzyjających warunków makroekonomicznych na powstawanie problemu systemowego w sektorze bankowym.Słowa kluczowe: bankructwo, CAMEL, predykcja logistyczna, zmienne makroekonomiczne JEL: G20, G21