In this paper, we consider chance constrained optimization of elliptic partial differential equation (CCPDE) systems with random parameters and constrained state variables. We demonstrate that, under standard assumptions, CCPDE is a convex optimization problem. Since chance constrained optimization problem are generally nonsmooth and difficult to solve directly, we propose a smoothing inner-outer approximation method to generate a sequence of smooth approximate problems for the CCPDE. Thus, the optimal solution of the convex CCPDE is approximable through optimal solutions of the inner-outer approximation problems. A numerical example demonstrates the viability of the proposed approach.