Thermostatically controlled loads (TCLs) have the potential to be a valuable resource for the Balancing Authority (BA) of the future. Examples of TCLs include household appliances such as air conditioners, water heaters, and refrigerators. Since the rated power of each TCL is on the order of kilowatts, to provide meaningful service for the BA, it is necessary to control large collections of TCLs. To perform design of a distributed coordination/control algorithm, the BA requires a control oriented model that describes the relevant dynamics of an ensemble. Works focusing on solely modeling the ensemble date back to the 1980's, while works focusing on control oriented modeling are more recent. In this work, we contribute to the control oriented modeling literature. We leverage techniques from computational fluid dynamics (CFD) to discretize a pair of Fokker-Planck equations derived in earlier work [1]. The discretized equations are shown to admit a certain factorization, which makes the developed model useful for control design. In particular, the effects of weather and control are shown to independently effect the system dynamics.