Recent advancements in novel fiber-coupled and portable terahertz (THz) spectroscopic imaging technology have accelerated applications in nondestructive testing (NDT). Although the polarization information of THz waves can play a critical role in material characterization, there are few demonstrations of polarization-resolved THz imaging as an NDT modality due to the deficiency of such polarimetric imaging devices. In this paper, we have inspected industrial carbon fiber composites using a portable and handheld imaging scanner in which the THz polarizations of two orthogonal channels are simultaneously captured by two photoconductive antennas. We observed significant polarimetric differences between the two-channel images of the same sample and the resulting THz Stokes vectors, which are attributed to the anisotropic conductivity of carbon fiber composites. Using both polarimetric channels, we can visualize the superficial and underlying interfaces of the first laminate. These results pave the way for the future applications of THz polarimetry to the assessment of coatings or surface quality on carbon fiber-reinforced substrates.