Sea–land segmentation (SLS) is a crucial step in coastline extraction. In CNN-based approaches for coastline feature extraction, downsampling is commonly used to reduce computational demands. However, this method may unintentionally discard small-scale features, hindering the capture of essential global contextual information and clear edge information necessary for SLS. To solve this problem, we propose a novel U-Net structure called Deformable Attention Edge Network (DAENet), which integrates edge enhancement algorithms and a deformable self-attention mechanism. First of all, we designed a multi-scale transformation (MST) to enhance edge feature extraction and model convergence through multi-scale transformation and edge detection, enabling the network to capture spatial–spectral changes more effectively. This is crucial because the deformability of the Deformable Attention Transformer (DAT) modules increases training costs for model convergence. Moreover, we introduced DAT, which leverages its powerful global modeling capabilities and deformability to enhance the model’s recognition of irregular coastlines. Finally, we integrated the Local Adaptive Multi-Head Attention-based Edge Detection (LAMBA) module to enhance the spatial differentiation of edge features. We designed each module to address the complexity of SLS. Experiments on benchmark datasets demonstrate the superiority of the proposed DAENet over state-of-the-art methods. Additionally, we conducted ablation experiments to evaluate the effectiveness of each module.