In memory of Klaus Hafner 2-Aminobenzimidazole 10, although a weak catalyst in the monomeric state, is a successful building block for effective artificial ribonucleases. In an effort to identify new building blocks with improved catalytic potential, RNA cleavage by a variety of heterocyclic amidines and guanidines has been studied. In addition to pK a values and steric effects, the energy difference between tautomeric forms seems to be another important parameter for catalysis. This information is available from quantum chemical calculations on higher levels, but semiempirical methods are sufficient to get a first estimate. According to this assumption, imidazoimidazol 18, characterized by isoenergetic tautomeric forms, is superior to 2-aminoimidazol 6, the best candidate among the simple compounds. By far the largest effects are seen with 2-aminoperimidine 24, which rapidly cleaves RNA even in the micromolar concentration range. The impressive reactivity, however, is related to a tendency of compound 24 to form polycationic aggregates which are the actual catalysts.