Abstract. In a general Hilbert framework, we consider continuous gradient-like dynamical systems for constrained multiobjective optimization involving non-smooth convex objective functions. Based on the Yosida regularization of the subdifferential operators involved in the system, we obtain the existence of strong global trajectories. We prove a descent property for each objective function, and the convergence of trajectories to weak Pareto minima. This approach provides a dynamical endogenous weighting of the objective functions. Applications are given to cooperative games, inverse problems, and numerical multiobjective optimization.