This paper suggests a new limited memory trust region algorithm for large unconstrained black box least squares problems, called LMLS. Main features of LMLS are a new non-monotone technique, a new adaptive radius strategy, a new Broyden-like algorithm based on the previous good points, and a heuristic estimation for the Jacobian matrix in a subspace with random basis indices. Our numerical results show that LMLS is robust and efficient, especially in comparison with solvers using traditional limited memory and standard quasi-Newton approximations.