This paper considers a novel propulsion system for the third-generation Spherical Underwater Robot (SURIII), the improved propulsion system is designed and analyzed to verify its increased stability compared to the second-generation Spherical Underwater Robot (SURII). With the new propulsion system, the robot is not only symmetric on the X axis but also on the Y axis, which increases the flexibility of its movement. The new arrangement also reduces the space constraints of servomotors and vectored water-jet thrusters. This paper also aims to the hydrodynamic characteristic of the whole robot. According to the different situations of the surge and heave motion, two kinds of methods are used to calculate the drag coefficient for the SURIII. For surge motion, the drag coefficient can be determined by the Reynolds number. For heave motion, considering about the influences of edges and gaps of the SURIII, the drag coefficient needs to be calculated by the dynamic equation. In addition, the Computational Fluid Dynamics (CFD) simulation is carried out to estimate some parameters which cannot be measured. The pressure contours, velocity vectors and velocity streamlines for different motions are extracted from the post-processor in the CFD simulation. The drag coefficients of surge and heave motion are both calculated by the simulation results and compared with the chosen one by Reynolds number. Finally, an experiment is also conducted for measure the propulsive force of the multi-vectored water-jet thrusters by using a 6-DoF load cell. The experimental results demonstrate the propulsive force is better than a previous version. Thus, the propulsive performance is better than before.