Motivation
The Balanced Minimum Evolution (BME) is a powerful distance based phylogenetic estimation model introduced by Desper and Gascuel and nowadays implemented in popular tools for phylogenetic analyses. It was proven to be computationally less demanding than more sophisticated estimation methods, e.g. maximum likelihood or Bayesian inference while preserving the statistical consistency and the ability to run with almost any kind of data for which a dissimilarity measure is available. BME can be stated in terms of a nonlinear non-convex combinatorial optimisation problem, usually referred to as the Balanced Minimum Evolution Problem (BMEP). Currently, the state-of-the-art among approximate methods for the BMEP is represented by FastME (version 2.0), a software which implements several deterministic phylogenetic construction heuristics combined with a local search on specific neighbourhoods derived by classical topological tree rearrangements. These combinations, however, may not guarantee convergence to close-to-optimal solutions to the problem due to the lack of solution space exploration, a phenomenon which is exacerbated when tackling molecular datasets characterised by a large number of taxa.
Results
To overcome such convergence issues, in this article we propose a novel metaheuristic, named PhyloES, which exploits the combination of an exploration phase based on Evolution Strategies, a special type of evolutionary algorithm, with a refinement phase based on two local search algorithms. Extensive computational experiments show that PhyloES consistently outperforms FastME, especially when tackling larger datasets, providing solutions characterised by a shorter tree length but also significantly different from the topological perspective.
Availability
The software is available at https://github.com/andygaspar/PHYLOES
Supplementary information
Supplementary data are available at Bioinformatics online.