Proceedings of the 33rd SIGCSE Technical Symposium on Computer Science Education - SIGCSE '02 2002
DOI: 10.1145/563487.563490
|View full text |Cite
|
Sign up to set email alerts
|

A tutorial program for propositional logic with human/computer interactive learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
1

Year Published

2007
2007
2020
2020

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 0 publications
0
5
0
1
Order By: Relevance
“…Na categoria de dedução simbólica, o trabalho que mais se destaca é o ambiente Logic-ITA (Yacef, 2010), que é um sistema de tutoria inteligente com uma arquitetura bastante tradicional para o ensino de dedução na Lógica Proposicional. Os sistemas KRRT (Alonso et al, 2007), P-Logic Tutor (Lukins et al, 2002) e Deep Thought's Hint Factory (Stamper, 2012) também são exemplos importantes de sistemas tutores de Lógica. Trabalhos recentes nesta área começaram a explorar o uso de modelos probabilísticos para inferir propriedades do modelo de aluno (Barnes e Stamper et al, 2010).…”
Section: Estado Da Arte Em Sistemas Tutores De Lógicaunclassified
“…Na categoria de dedução simbólica, o trabalho que mais se destaca é o ambiente Logic-ITA (Yacef, 2010), que é um sistema de tutoria inteligente com uma arquitetura bastante tradicional para o ensino de dedução na Lógica Proposicional. Os sistemas KRRT (Alonso et al, 2007), P-Logic Tutor (Lukins et al, 2002) e Deep Thought's Hint Factory (Stamper, 2012) também são exemplos importantes de sistemas tutores de Lógica. Trabalhos recentes nesta área começaram a explorar o uso de modelos probabilísticos para inferir propriedades do modelo de aluno (Barnes e Stamper et al, 2010).…”
Section: Estado Da Arte Em Sistemas Tutores De Lógicaunclassified
“…Firstly, it should be said that there is no consensus about the kind of logic that should be taught: classical logic-also called natural deduction-seems to have some popularity. For instance, reviewing the literature, we can find: HyperProof [10], Deep Thought [11], CMU Proof Tutor [16] (nowadays known as AProS), OLIVER [17], P-LOGIC Tutor [18] and Logic-ITA [19], all of which use a kind of natural-deduction logic for propositional logic. OpenProof [7] uses a kind of natural-deduction logic for FOL.…”
Section: Overview Of Approaches To Increase the Knowledge Transfer Ofmentioning
confidence: 99%
“…Most of the systems mentioned before are examples of the simpler approaches presented in [18]: HyperProof is a proof checker; MacLogic performs as both proof checker and proof assistant; JAPE performs as a proof editor; Deep Thought, WinKE, AProS, OLIVER, and Matita all perform as proof assistants; P-LOGIC Tutor and Logic-ITA both perform as Intelligent Tutoring Systems, the most complex behavior in the classification provided in Ref. [18].…”
Section: Overview Of Approaches To Increase the Knowledge Transfer Ofmentioning
confidence: 99%
“…The Carnegie Mellon Proof Tutor (CPT) [36], the P-Logic Tutor [29], and Logic-ITA [28] are all examples of intelligent tutors designed to teach propositional logic. CPT uses a combination of Fitch diagrams and a goal tree to describe the proof being developed.…”
Section: Teaching Systems For Proofmentioning
confidence: 99%
“…First, although we find there are many usability issues still to overcome, the exercises do represent an advance in enabling untrained students to write verifiable proofs in a system where the student must write the lines of proof (rather than asking the automated proof assistant to apply tactics to manipulate goal statements). There are many systems that ask students to write simple proofs in simpler domains such as predicate logic [28,29], but this is the first web-based learning environment to ask students to write proofs in this manner for number theory. The second contribution is the results from the qualitative usability study we conducted.…”
Section: Introductionmentioning
confidence: 99%