Whether and how primates are able to maintain long-term affiliative relationships is still under debate. Emotional bookkeeping (EB), the partner-specific accumulation of emotional responses to earlier interactions, is a candidate mechanism that does not require high cognitive abilities. EB is difficult to study in real animals, due to the complexity of primate social life. Therefore, we developed an agent-based model based on macaque behavior, the EMO-model, that implements arousal and two emotional dimensions, anxiety-FEAR and satisfaction-LIKE, which regulate social behavior. To implement EB, model individuals assign dynamic LIKE attitudes towards their group members, integrating partner-specific emotional responses to earlier received grooming episodes. Two key parameters in the model were varied to explore their effects on long-term affiliative relationships: (1) the timeframe over which earlier affiliation is accumulated into the LIKE attitudes; and (2) the degree of partner selectivity. EB over short and long timeframes gave rise to low variation in LIKE attitudes, and grooming partner preferences were only maintained over one to two months. Only EB over intermediate-term timeframes resulted in enough variation in LIKE attitudes, which, in combination with high partner selectivity, enables individuals to differentiate between regular and incidental grooming partners. These specific settings resulted in a strong feedback between differentiated LIKE attitudes and the distribution of grooming, giving rise to strongly reciprocated partner preferences that could be maintained for longer periods, occasionally up to one or two years. Moreover, at these settings the individual’s internal, socio-emotional memory of earlier affiliative episodes (LIKE attitudes) corresponded best to observable behavior (grooming partner preferences). In sum, our model suggests that intermediate-term LIKE dynamics and high partner selectivity seem most plausible for primates relying on emotional bookkeeping to maintain their social bonds.