2023
DOI: 10.1007/978-3-031-25891-6_15
|View full text |Cite
|
Sign up to set email alerts
|

A Two-Country Study of Default Risk Prediction Using Bayesian Machine-Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…In this context, Bargagli-Stoffi et al (2021) provides a comprehensive review of the recent literature on the use of machine learning for the analysis firm dynamics. The authors highlight that the majority of work dealing with the prediction of bankruptcy or financial distress uses either decision tree-based techniques (see, e.g., Behr and Weinblat, 2017;Linn and Weagley, 2019;Moscatelli et al, 2019;De Martiis et al, 2020;Davies et al, 2023;Incerti et al, 2022) or neural network-based methods (see, e.g., Alaka et al, 2018;Brédart, 2014;Hosaka, 2019;Sun and Li, 2011;Tsai and Wu, 2008;Tsai et al, 2014;Wang et al, 2014;Lee et al, 1996;Udo, 1993).…”
Section: Empirical Strategymentioning
confidence: 99%
“…In this context, Bargagli-Stoffi et al (2021) provides a comprehensive review of the recent literature on the use of machine learning for the analysis firm dynamics. The authors highlight that the majority of work dealing with the prediction of bankruptcy or financial distress uses either decision tree-based techniques (see, e.g., Behr and Weinblat, 2017;Linn and Weagley, 2019;Moscatelli et al, 2019;De Martiis et al, 2020;Davies et al, 2023;Incerti et al, 2022) or neural network-based methods (see, e.g., Alaka et al, 2018;Brédart, 2014;Hosaka, 2019;Sun and Li, 2011;Tsai and Wu, 2008;Tsai et al, 2014;Wang et al, 2014;Lee et al, 1996;Udo, 1993).…”
Section: Empirical Strategymentioning
confidence: 99%