Silicon nanoparticles (Si-NPs) are considered as possible candidates for a wide spectrum of future technological applications. Research in the last decades has shown that plasmas are one of the most suitable environments for the synthesis of Si-NPs. This review discusses the unique size-dependent features of Si-NPs, and the fundamental mechanisms of nanoparticle formation in plasmas by highlighting major plasma synthesis techniques. In addition, the routes to achieve control on Si-NP morphology and chemistry in plasma environments will be discussed. We will review recent advancements in solar cell and lithium-ion battery applications of gas-phase plasma synthesized Si-NPs by highlighting key results from the literature. We will discuss further technological applications, where gasphase plasma synthesized Si-NPs can contribute, like water splitting and thermoelectrics.