A quasi-phase-matched (QPM) optical parametric oscillator (OPO) was developed using a periodically poled Mg-doped stoichiometric LiTaO3 crystal to generate mid-IR light for excitation of laser ultrasound in carbon fiber reinforced plastic (CFRP). The ultrasound generation efficiency was measured at the three different wavelengths that emanate from the OPO: 1.064 μm, 1.59/1.57 μm, and 3.23/3.30 μm. The measurements indicate that mid-IR 3.2–3.3 μm light generates the most efficient ultrasonic waves in CFRP with the least laser damage. We used mid-IR light in conjunction with a laser interferometer to demonstrate the detection of flaws/defects in CFRP such as the existence of air gaps that mimic delamination and voids in CFRP, and the inhomogeneous adhesion of CFRP material to a metal plate was also clearly detected.