2010
DOI: 10.1007/s12190-010-0446-z
|View full text |Cite
|
Sign up to set email alerts
|

A two-patch prey-predator model with food-gathering activity

Abstract: In insect ecosystem, the dynamics of prey and predator is regulated by complex interactions between them. Insect pests are spatially aggregated in patches forming a spatial pattern in the environment. An efficient predator dynamically changes its strategies and time for its random search movements to concentrate on higher resource patches based on the benefit of assessment. This food-gathering activity of both prey and predator plays a major role in stabilizing the system by influencing the per unit food consu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
5
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(7 citation statements)
references
References 46 publications
0
5
0
2
Order By: Relevance
“…Recently, there has been increasing empirical and theoretical work on the non-random foraging movements of predators which often responses to prey-contact stimuli such as spatial variation in prey density [10,39], or different type of signals arising directly from prey [74]. See more related examples of mathematical models in [48,44,11,7,12,21,9,43,15,31,27,55]. Kareiva [40] provided a good review on varied mathematical models that deal with dispersal and spatially distributed populations and pointed out the needs of including non-random foraging movements in meta-population models.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Recently, there has been increasing empirical and theoretical work on the non-random foraging movements of predators which often responses to prey-contact stimuli such as spatial variation in prey density [10,39], or different type of signals arising directly from prey [74]. See more related examples of mathematical models in [48,44,11,7,12,21,9,43,15,31,27,55]. Kareiva [40] provided a good review on varied mathematical models that deal with dispersal and spatially distributed populations and pointed out the needs of including non-random foraging movements in meta-population models.…”
Section: Discussionmentioning
confidence: 99%
“…Their study showed that the extension of the Holling time budget argument to movement has essential effects on the dynamics. By extending the model of [31], Ghosh and Bhattacharyya [15] formulated a similar two patch prey-predator model with density-independent migration in prey and density-dependent migration in the predator. Their study shows that several foraging parameters such as handling time, dispersal rate can have important consequences in stability of prey-predator system.…”
Section: Introductionmentioning
confidence: 99%
“…В зарубежной литературе за ней закрепилось другое названиемодель Розенцвейга -Макартура с логистическим законом роста численности жертв и функциональным откликом по Холлингу II типа [22]. Модель (1) и ее модификации встречается у некоторых исследователей [17,18,25,26], которые, к сожалению, ограничиваются локальным анализом устойчивости и изучением условий однородного распределения особей по ареалу. Данное исследование концентрируется на случае неоднородного распределения, которое проявляется в сложных нелинейных эффектах, связанных с эволюцией периодических режимов, при которых сообщества оказываются несинхронными, либо демонстрируют частичную синхронизацию.…”
Section: модель динамик двух неидентичных связанных сообществunclassified
“…Другими словами, было показано, что при слабой связи (m < 0.01) синхронизация, фактически, возможна лишь для идентичных сообществ. В целом, перечисленные результаты хорошо согласуются с результатами других авторов [17,18,25,26]. Однако, дальнейшее исследование модели (2) показало, что слабо связанные неидентичные сообщества способны, по крайней мере, к частичной синхронизации именно в случае большой разницы между значениями смертности хищников.…”
Section: модель динамик двух неидентичных связанных сообществunclassified
“…For example, the work of (Fraser and Cerri, 1982;Hansson, 1991;Jánosi and Scheuring, 1997;Namba, 1980;Nguyen-Ngoc et al, 2012;Savino and Stein, 1989;Silva et al, 2001) explored the effects of dispersal on population dynamics of prey-predator models when local population density is a selecting factor for dispersal. The work of Huang and Diekmann (2001) and Ghosh and Bhattacharyya (2011) studied the population dynamics of a two patch model with dispersal in predator driving by local population density of prey through Holling searching-handling time budget argument. The work of Kareiva and Odell (1987) studied dynamics when the dispersal of predator is carried out due to the concentrated food resources.…”
Section: Introductionmentioning
confidence: 99%