Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Several methods in survival analysis are based on the proportional hazards assumption. However, this assumption is very restrictive and often not justifiable in practice. Therefore, effect estimands that do not rely on the proportional hazards assumption are highly desirable in practical applications. One popular example for this is the restricted mean survival time (RMST). It is defined as the area under the survival curve up to a prespecified time point and, thus, summarizes the survival curve into a meaningful estimand. For two‐sample comparisons based on the RMST, previous research found the inflation of the type I error of the asymptotic test for small samples and, therefore, a two‐sample permutation test has already been developed. The first goal of the present paper is to further extend the permutation test for general factorial designs and general contrast hypotheses by considering a Wald‐type test statistic and its asymptotic behavior. Additionally, a groupwise bootstrap approach is considered. Moreover, when a global test detects a significant difference by comparing the RMSTs of more than two groups, it is of interest which specific RMST differences cause the result. However, global tests do not provide this information. Therefore, multiple tests for the RMST are developed in a second step to infer several null hypotheses simultaneously. Hereby, the asymptotically exact dependence structure between the local test statistics is incorporated to gain more power. Finally, the small sample performance of the proposed global and multiple testing procedures is analyzed in simulations and illustrated in a real data example.
Several methods in survival analysis are based on the proportional hazards assumption. However, this assumption is very restrictive and often not justifiable in practice. Therefore, effect estimands that do not rely on the proportional hazards assumption are highly desirable in practical applications. One popular example for this is the restricted mean survival time (RMST). It is defined as the area under the survival curve up to a prespecified time point and, thus, summarizes the survival curve into a meaningful estimand. For two‐sample comparisons based on the RMST, previous research found the inflation of the type I error of the asymptotic test for small samples and, therefore, a two‐sample permutation test has already been developed. The first goal of the present paper is to further extend the permutation test for general factorial designs and general contrast hypotheses by considering a Wald‐type test statistic and its asymptotic behavior. Additionally, a groupwise bootstrap approach is considered. Moreover, when a global test detects a significant difference by comparing the RMSTs of more than two groups, it is of interest which specific RMST differences cause the result. However, global tests do not provide this information. Therefore, multiple tests for the RMST are developed in a second step to infer several null hypotheses simultaneously. Hereby, the asymptotically exact dependence structure between the local test statistics is incorporated to gain more power. Finally, the small sample performance of the proposed global and multiple testing procedures is analyzed in simulations and illustrated in a real data example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.