2020
DOI: 10.3390/e23010050
|View full text |Cite
|
Sign up to set email alerts
|

A Two-Stage Approach for Bayesian Joint Models of Longitudinal and Survival Data: Correcting Bias with Informative Prior

Abstract: Joint models of longitudinal and survival outcomes have gained much popularity in recent years, both in applications and in methodological development. This type of modelling is usually characterised by two submodels, one longitudinal (e.g., mixed-effects model) and one survival (e.g., Cox model), which are connected by some common term. Naturally, sharing information makes the inferential process highly time-consuming. In particular, the Bayesian framework requires even more time for Markov chains to reach st… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 49 publications
0
2
0
Order By: Relevance
“…Two‐stage approaches for joint models are usually performed by fitting the longitudinal submodel and then somehow incorporating its information into the survival submodel. Tsiatis' proposal 6 is one of the most popular two‐stage strategies and has its Bayesian version 41 . Specifically, in the first stage, we calculate the maximum a posteriori (MAP) of the random effects bold-italicb$$ \boldsymbol{b} $$ and parameters bold-italicθy$$ {\boldsymbol{\theta}}_y $$ estimated from longitudinal submodel fit separately: false(truebold-italicθ^y,truebold-italicb^false)=arg maxbold-italicθy,0.3embold-italicbi=1nj=1niffalse(yijfalse|bold-italicθy,bold-italicbifalse)0.3emffalse(bold-italicbifalse|bold∑false)0.3emπfalse(bold-italicθyfalse),$$ \left({\hat{\boldsymbol{\theta}}}_y,\hat{\boldsymbol{b}}\right)=\underset{{\boldsymbol{\theta}}_y,\kern0.3em \boldsymbol{b}}{\arg\;\max}\prod \limits_{i=1}^n\prod \limits_{j=1}^{n_i}f\left({y}_{ij}|{\boldsymbol{\theta}}_y,{\boldsymbol{b}}_i\right)\kern0.3em f\left({\boldsymbol{b}}_i|\boldsymbol{\Sigma} \right)\kern0.3em \pi \left({\boldsymbol{\theta}}_y\right), $$ where πfalse(bold-italicθyfalse)$$ \pi \left({\boldsymbol{\theta}}_y\right) $$ is the prior distribution on the parameter vector bold-italicθy$$ {\boldsymbol{\theta}}_y $$.…”
Section: Bayesian Inferencementioning
confidence: 99%
See 1 more Smart Citation
“…Two‐stage approaches for joint models are usually performed by fitting the longitudinal submodel and then somehow incorporating its information into the survival submodel. Tsiatis' proposal 6 is one of the most popular two‐stage strategies and has its Bayesian version 41 . Specifically, in the first stage, we calculate the maximum a posteriori (MAP) of the random effects bold-italicb$$ \boldsymbol{b} $$ and parameters bold-italicθy$$ {\boldsymbol{\theta}}_y $$ estimated from longitudinal submodel fit separately: false(truebold-italicθ^y,truebold-italicb^false)=arg maxbold-italicθy,0.3embold-italicbi=1nj=1niffalse(yijfalse|bold-italicθy,bold-italicbifalse)0.3emffalse(bold-italicbifalse|bold∑false)0.3emπfalse(bold-italicθyfalse),$$ \left({\hat{\boldsymbol{\theta}}}_y,\hat{\boldsymbol{b}}\right)=\underset{{\boldsymbol{\theta}}_y,\kern0.3em \boldsymbol{b}}{\arg\;\max}\prod \limits_{i=1}^n\prod \limits_{j=1}^{n_i}f\left({y}_{ij}|{\boldsymbol{\theta}}_y,{\boldsymbol{b}}_i\right)\kern0.3em f\left({\boldsymbol{b}}_i|\boldsymbol{\Sigma} \right)\kern0.3em \pi \left({\boldsymbol{\theta}}_y\right), $$ where πfalse(bold-italicθyfalse)$$ \pi \left({\boldsymbol{\theta}}_y\right) $$ is the prior distribution on the parameter vector bold-italicθy$$ {\boldsymbol{\theta}}_y $$.…”
Section: Bayesian Inferencementioning
confidence: 99%
“…Tsiatis' proposal 6 is one of the most popular two-stage strategies and has its Bayesian version. 41 Specifically, in the first stage, we calculate the maximum a posteriori (MAP) of the random effects b and parameters 𝜽 y estimated from longitudinal submodel fit separately:…”
Section: Stgm Approachmentioning
confidence: 99%