Cloud services gain more attention due to its accessibility, performance, and cost factors. Cloud offers a wide range of services and completes the task without any delay due to its scheduling policies. Task scheduling is an important factor in cloud computing applications. The performance of applications increases due to an effective scheduling strategy. The cloud resources are allocated to the tasks through task scheduling. Factors like customer satisfaction, resource utilization, better performance make task scheduling crucial for service providers. Depending on the scheduling schemes support in clouds, scheduling is categorized into single cloud or multi-cloud scheduling. Multi-cloud environment provides diverse resources and significantly reduces the cost and commercial limitations. However, reducing the cost functions and makespan are the major factors considered to avoid customer dissatisfaction. But it is essential to concentrate on other factors, such as throughput, delay, Makespan, waiting time, response time, utilization, and efficiency to improve the quality of services. This research work presents a Multi-Swarm Optimization model for Multi-Cloud Scheduling for Enhanced Quality of Services for a multi-cloud environment. Experimental results demonstrate that the proposed approach performs better in all aspects compared to existing techniques, such as Adaptive energy-efficient scheduling, single objective particle swarm optimization scheduling, and improves the quality of services.