2023
DOI: 10.1021/acsestwater.3c00478
|View full text |Cite
|
Sign up to set email alerts
|

A Two-Stage Interpretable Machine Learning Framework for Accurate Prediction of Trace Pollutants: With an Application to Microcystin

Sifeng Wu,
Zhongyao Liang,
Qianlinglin Qiu

Abstract: Trace pollutants are widely observed in aquatic ecosystems and can significantly impact human health and the environment. Accurate prediction of trace pollutants and understanding their response to environmental drivers are key to environmental management, yet these tasks remain challenging. An important reason for this challenge is that monitoring data for trace pollutants are often left-censored, leading to biased estimation and inaccurate response-driver relationships. Here we propose a novel two-stage inte… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 84 publications
0
1
0
Order By: Relevance
“…The special issue includes several review articles encompassing a wide spectrum, ranging from a historical perspective of water data to computational modeling in wastewater treatment to ML modeling of environmental chemical reactions, environmental toxicology, heavy metal removal, and cyanobacterial harmful algal blooms (HABs) . One significant application of these innovative tools is ML-assisted environmental monitoring, which can address diverse problems, such as predicting effluent nutrients or influent flow rates and nutrient loads at wastewater treatment plants, , formation of disinfection byproducts, drivers of the accumulation of potentially toxic elements in sediments, greenhouse gas emissions, , occurrence of PFAS, water quality assessment, microplastics, microcystins, and differentiation of landfill leachate and domestic sludge . ML has also been extensively employed to model environmental chemical reactions and processes, including adsorption onto various materials, , biodegradation, photodegradation, and the physicochemical and meteorological variables that affect the seasonal growth and decline of HABs .…”
mentioning
confidence: 99%
“…The special issue includes several review articles encompassing a wide spectrum, ranging from a historical perspective of water data to computational modeling in wastewater treatment to ML modeling of environmental chemical reactions, environmental toxicology, heavy metal removal, and cyanobacterial harmful algal blooms (HABs) . One significant application of these innovative tools is ML-assisted environmental monitoring, which can address diverse problems, such as predicting effluent nutrients or influent flow rates and nutrient loads at wastewater treatment plants, , formation of disinfection byproducts, drivers of the accumulation of potentially toxic elements in sediments, greenhouse gas emissions, , occurrence of PFAS, water quality assessment, microplastics, microcystins, and differentiation of landfill leachate and domestic sludge . ML has also been extensively employed to model environmental chemical reactions and processes, including adsorption onto various materials, , biodegradation, photodegradation, and the physicochemical and meteorological variables that affect the seasonal growth and decline of HABs .…”
mentioning
confidence: 99%