In this paper, the free vibration behaviors of composite laminated annular and circular plates under complex elastic boundary constraints are investigated. Firstly, Reddy’s high-order shear deformation theory (HSDT) and Jacobi polynomial method are effectively combined to establish the unified vibration analysis model of composite laminated annular and circular plates. Secondly, the simulation of complex elastic boundary and coupling boundary is realized by using artificial virtual spring technology. Then, the energy equation of the composite laminated plate is established by using Rayleigh–Ritz energy technology. Finally, the free vibration solution equation of the laminated plate is obtained through the Hamilton differential principle. The fast and uniform convergence of this method and the accuracy of the calculated results are verified by numerical examples and the model experimental method. On this basis, the parameterization study is conducted, and the effects of material parameters, geometric parameters, spring stiffness values, and lamination scheme on the vibration characteristics of the annular or circular plate are fully discussed, which can provide a theoretical basis for future research.