2023
DOI: 10.1002/cjce.24869
|View full text |Cite
|
Sign up to set email alerts
|

A unified polymer reaction engineering methodology for catalytic olefin polymerization: From reaction conditions and catalyst reaction performance to molecular and rheological properties for forward, reverse engineering and deconvolution applications

Abstract: This work presents a unified polymer reaction engineering methodology for the catalytic olefin polymerization process. The proposed modelling approach offers a modelling pathway from the polymerization recipe to production rate and polymer microstructure, and finally to rheological properties. Furthermore, this work introduces for the first time the constraint of the actual reaction performance of the polymerization catalyst in the inverse rheology and microstructural deconvolution problem, limiting the soluti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 36 publications
0
2
0
Order By: Relevance
“…The authors of the articles in this issue join us from many countries and institutions across the globe (Figure 1 and Table 1) to thank Archie for his enduring legacy in polymerization reaction engineering, a field of academic and industrial interest that he established practically single‐handedly. [ 1–45 ]…”
Section: Figurementioning
confidence: 99%
“…The authors of the articles in this issue join us from many countries and institutions across the globe (Figure 1 and Table 1) to thank Archie for his enduring legacy in polymerization reaction engineering, a field of academic and industrial interest that he established practically single‐handedly. [ 1–45 ]…”
Section: Figurementioning
confidence: 99%
“…The potential of the proposed methodology is highlighted within a series of indicative examples, including both forward and reverse engineering, as well as deconvolution applications. [ 1 ]…”
mentioning
confidence: 99%