The borate complexes derived from salicylaldimine ligands, called boranils, possess a wide range of photophysical and electronic characteristics intrinsically. The unique combination of molecular rigidity, rendered by four-coordinate boron bridges, and extended π-conjugation enable them to serve as technically feasible fluorescent materials (dyes). The incorporation of liquid crystallinity in these boron(III) complexes, especially the columnar (Col) mesomorphism, which is overlooked hitherto, would provide a new dimension to these complexes. Herein, we report the first examples of tris(boranil) discotic liquid crystal (LC) dyes that have been readily synthesized by treating tris(Nsalicylideneaniline)s, (TSAN)s, with BF 3 .Et 2 O in the presence of an acid quencher. These C 3 -symmetric borate complexes selfassemble into the Col phase, existing over a wide thermal span including room temperature. The 2D periodic order of the Col phases shows dependence on the length of the peripheral tails. The photophysical measurements reveal the fluorescence emission in their two condensed states viz., solid and Col phase, and in solution. Their electrochemical, twostep oxidation process coupled with the aforesaid features upholds their significance in applied research.