2022
DOI: 10.48550/arxiv.2205.06749
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A uniqueness criterion and a counterexample to regularity in an incompressible variational problem

Abstract: In this paper we consider the problem of minimizing functionals of the form E(u) = B f (x, ∇u) dx in a suitably prepared class of incompressible, planar maps u : B → R 2 . Here, B is the unit disk and f (x, ξ) is quadratic and convex in ξ. It is shown that if u is a stationary point of E in a sense that is made clear in the paper, then u is a unique global minimizer of E(u) provided the gradient of the corresponding pressure satisfies a suitable smallness condition. We apply this result to construct a non-auto… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?