2023
DOI: 10.1002/anie.202317087
|View full text |Cite
|
Sign up to set email alerts
|

A Universal Approach for Sustainable Urea Synthesis via Intermediate Assembly at the Electrode/Electrolyte Interface

Xiaojin Tu,
Xiaorong Zhu,
Shuowen Bo
et al.

Abstract: Electrocatalytic C−N coupling process is indeed a sustainable alternative for direct urea synthesis and co‐upgrading of carbon dioxide and nitrate wastes. However, the main challenge lies in the unactivated C−N coupling process. Here, we proposed a strategy of intermediate assembly with alkali metal cations to activate C−N coupling at the electrode/electrolyte interface. Urea synthesis activity follows the trend of Li+<Na+<Cs+<K+. In the presence of K+, a world‐record performance was achieved with a u… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
7
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 24 publications
(8 citation statements)
references
References 61 publications
0
7
0
1
Order By: Relevance
“…À 1 59.7 � 3.4 % Co 1 À TiO 2 [38] 1 bar CO 2 0.1 M KNO 3 0.9 M KHCO 3 + 0.1 M KNO 3 À 0.8 V 212.8 � 10.6 mmol h À 1 g À 1 36.2 % CuWO 4 [29] 1 bar CO 2 0.1 M KNO 3 0.1 M KNO 3 À 0.2 V 98 � 3.2 μg h À 1 mg À 1 cat 70.1 � 2.4 % Bi: 10 % In/C [25] 1 bar CO 2 0.1 M KNO 3 0.1 M KHCO 3 À 0.45 V 606.38 μg mg À 1 h À 1 20.31 % Cu 97 In 3 À C [30] 1 bar CO 2 10 mM KNO 3 0.1 M KHCO 3 + 10 mM KNO 3 À 1.4 V 13.1 mmol g À 1 h À 1 -MoO x /C [37] 1 bar CO 2 0.1 M KNO 3 0.1 M KNO 3 À 0.6 V 1431.5 μg h À 1 mg cat À 1 27.7 % Cu 1 À CeO 2 [33] 1 bar CO 2 50 mM KNO 3 0.1 M KHCO 3 + 50 mM KNO 3 À 1.6 V 52.84 mmol h À 1 g cat À 1 -CoRuN 6 [34] 1 bar CO 2 0.1 M KNO3 0.1 M KNO 3 À 0.6 V 8.98 mmol h À 1 g À 1 25.31 % CuÀ SPÀ OMe [36] 1 bar CO 2 0.01 M KNO 3 0.1 M KHCO 3 + 0.01 M KNO 3 À 0.49 V 3.64 mg h À 1 mg cat…”
Section: Discussionunclassified
See 2 more Smart Citations
“…À 1 59.7 � 3.4 % Co 1 À TiO 2 [38] 1 bar CO 2 0.1 M KNO 3 0.9 M KHCO 3 + 0.1 M KNO 3 À 0.8 V 212.8 � 10.6 mmol h À 1 g À 1 36.2 % CuWO 4 [29] 1 bar CO 2 0.1 M KNO 3 0.1 M KNO 3 À 0.2 V 98 � 3.2 μg h À 1 mg À 1 cat 70.1 � 2.4 % Bi: 10 % In/C [25] 1 bar CO 2 0.1 M KNO 3 0.1 M KHCO 3 À 0.45 V 606.38 μg mg À 1 h À 1 20.31 % Cu 97 In 3 À C [30] 1 bar CO 2 10 mM KNO 3 0.1 M KHCO 3 + 10 mM KNO 3 À 1.4 V 13.1 mmol g À 1 h À 1 -MoO x /C [37] 1 bar CO 2 0.1 M KNO 3 0.1 M KNO 3 À 0.6 V 1431.5 μg h À 1 mg cat À 1 27.7 % Cu 1 À CeO 2 [33] 1 bar CO 2 50 mM KNO 3 0.1 M KHCO 3 + 50 mM KNO 3 À 1.6 V 52.84 mmol h À 1 g cat À 1 -CoRuN 6 [34] 1 bar CO 2 0.1 M KNO3 0.1 M KNO 3 À 0.6 V 8.98 mmol h À 1 g À 1 25.31 % CuÀ SPÀ OMe [36] 1 bar CO 2 0.01 M KNO 3 0.1 M KHCO 3 + 0.01 M KNO 3 À 0.49 V 3.64 mg h À 1 mg cat…”
Section: Discussionunclassified
“…The K + mediated intermediate assembly strategy significantly reduced the CÀ N coupling energy barrier to promote electrocatalytic urea synthesis (Figure 7). [38] In a word, these regulation strategies, such as additives, doping, bimetallic sites, defects engineering, regulating crystal face or surface sites and functional nanoclusters, could obviously improve the efficiency of urea electrosynthesis from CO 2 and NO 3 À or NO 2 À via CÀ N coupling. This approach enables richnitrogen waste a great opportunity to "turn waste into treasure", meanwhile may alleviate energy, resources and environmental problems.…”
Section: The Strategies Of Activity Regulationmentioning
confidence: 99%
See 1 more Smart Citation
“…The cation effect has the potential to control the key intermediate at the electrode/electrolyte interfaces to promote urea synthesis activities. 106 The alkaline metal cations in electrolytes can stabilize intermediates to promote the C–N coupling process, following a sequence of Li + < Na + < Cs + < K + . Besides, the slow gas diffusion at the three-phase interfaces will result in sluggish kinetics, which strongly hinders the whole reaction.…”
Section: Discussionmentioning
confidence: 99%
“…For instance, the explicit water layer and implicit solvation can be an effective strategy for treating solvation in the modeling system. Wang et al proposed a hybrid model (containing explicit water layer and implicit solvation) to simulate NITRR at the water/Cu interface [105] . By introducing fractional charges, the pH values on the water/Cu interface can be implicitly controlled.…”
Section: Theoretical Screening For Effective Sacs Configurationmentioning
confidence: 99%