For advanced thermal interface materials (TIMs), massive inorganic addition for high isotropic thermal conductivities conflicts with suitable rheological viscosity for low contact thermal resistance. Traditional strategies rarely resolve such a contradiction, and it remains an academic and industrial challenge. Herein, inspired by the structure and function of the bone joint, a best-of-both-worlds approach is reported that endows a standard polydimethylsiloxane/alumina (PDMS/Al 2 O 3 ) TIM with simultaneously enhanced rheological mobility and thermal conductivity. It is conducted by employing morphology-controllable gallium-based liquid metal (LM) to the surface of Al 2 O 3 by a scalable mechanochemical process. At the typical polymer-LM-Al 2 O 3 interface, LM droplets with low cohesive energy can release the freedom for macromolecular chain relaxation and reduce the viscosity, successfully allowing the high-loading TIMs (79 vol.%) to keep the thixotropic state and effectively reducing its contact thermal resistance with a copper substrate by 65%. At the same time, adjacent LMs merge to thermally bridge separate Al 2 O 3 particles, which facilitates the interfacial thermal conduction and enhances the thermal conductivity from 5.9 to 6.7 W m −1 K −1 . Along with additional electrical insulation, this filler modification strategy is believed to inspire others to develop high-performance polymer-based TIMs for future advanced electronics.