As the demand for scalable electrochemical energy storage increases, vanadium redox flow batteries (VRFBs) offer multiple advantages due to their inherent safety, environmental friendliness, and power‐to‐capacity decoupling capability. However, the intrinsic structural limitations of the electrodes, coupled with deficiencies in their surface properties, significantly impede the practical implementation of VRFBs. The systematic optimization of electrodes through precursor engineering represents a forward‐thinking approach with significant potential for advancing the field. In this paper, recent advances in VRFB electrodes are comprehensively reviewed from the perspective of precursor engineering. To begin with, the advantages based on different types of precursors and processing methods are elucidated. Next, the focus is on the additive modification and design of electrodes through various precursor engineering strategies to optimize their structural and surface properties. Lastly, this review also discusses the current dilemmas faced by the four types of precursor engineering and explores future directions. It is hoped that this review will contribute to the further innovation and production application of VRFB electrode materials.