The well-characterized secretory glycoprotein, rice (Oryza sativa) a-amylase isoform I-1 (AmyI-1), was localized within the plastids and proved to be involved in the degradation of starch granules in the organelles of rice cells. In addition, a large portion of transiently expressed AmyI-1 fused to green fluorescent protein (AmyI-1-GFP) colocalized with a simultaneously expressed fluorescent plastid marker in onion (Allium cepa) epidermal cells. The plastid targeting of AmyI-1 was inhibited by both dominant-negative and constitutively active mutants of Arabidopsis thaliana ARF1 and Arabidopsis SAR1, which arrest endoplasmic reticulum-to-Golgi traffic. In cells expressing fluorescent trans-Golgi and plastid markers, these fluorescent markers frequently colocalized when coexpressed with AmyI-1. Three-dimensional time-lapse imaging and electron microscopy of high-pressure frozen/freeze-substituted cells demonstrated that contact of the Golgi-derived membrane vesicles with cargo and subsequent absorption into plastids occur within the cells. The transient expression of a series of C-terminal-truncated AmyI-1-GFP fusion proteins in the onion cell system showed that the region from Trp-301 to Gln-369 is necessary for plastid targeting of AmyI-1. Furthermore, the results obtained by site-directed mutations of Trp-302 and Gly-354, located on the surface and on opposite sides of the AmyI-1 protein, suggest that multiple surface regions are necessary for plastid targeting. Thus, Golgi-to-plastid traffic appears to be involved in the transport of glycoproteins to plastids and plastid targeting seems to be accomplished in a sorting signal-dependent manner.
INTRODUCTIONCereal a-amylases (EC 3.2.1.1) are typical secretory proteins found in many plants. In germinating cereal seeds, these enzyme molecules are biosynthesized and secreted from the secretory tissues, the scutellar epithelium and the aleurone, to the starchy endosperm, which has undergone programmed cell death. Numerous a-amylase isoforms have been identified in cereals, but the predominant a-amylase isoform I-1 (AmyI-1) in rice (Oryza sativa) is a unique glycoprotein that bears N-linked oligosaccharide side chains (Hayashi et al., 1990;Terashima et al., 1994). The biosynthesis and secretion of AmyI-1 have been extensively investigated: mRNA translation on endoplasmic reticulum (ER) membrane-bound ribosomes, signal sequence-dependent translocation of the ER, core glycosylation in the ER lumen, vesicular transport to the Golgi apparatus, oligosaccharide modification to the complex type, and exocytosis all proceed according to the canonical secretory mechanism (Palade, 1975;Blobel, 1980;Kornfeld and Kornfeld, 1985).Protein targeting into plastids is an essential cellular event for maintaining plant function and plant life. Plastids, including chloroplasts in green leaves and amyloplasts in starchy cells, contain the genetic machinery required to synthesize their own proteins, although most plastidial proteins are encoded in the nuclear DNA. Nuclear-encoded plastidial...