Background
In recent days, solid-phase extraction methods are widely utilized for the extraction of drug molecules from plasma samples due to their easy operating procedures and low matrix effect. The trace-level solid-phase extraction of three structurally related antiepileptic drugs brivaracetam (BVC), eslicarbazepine acetate (ESL), and carbamazepine (CBZ) was investigated by using a magnetic porous material graphene oxide-β-cyclodextrin (MGO-CD). Morphology, magnetic properties, and structure of the synthesized MGO-CD were characterized by using FT-IR, SEM, XRD, and VSM.
Results
Solid-phase extraction (SPE) methods were used to extract the analytes from human plasma. Different extraction solvents such as acetonitrile (ACN), methanol (MeOH), acetone, chloroform (CHCl3), tertiary butyl diethyl ether (TBDE), and ethyl acetate (EtOAc) with variable polarities were used to extract drug molecules from MGO-CD. The linearity analysis showed good correlation coefficient values (R2) of 0.9989, 0.9995, and 0.9982 for BVC, ESL, and CBZ respectively. The LOD and LOQ ranges were found to be 6.14–28.32 ng mL−1 and 20.45–94.31 ng mL−1 respectively.
Conclusion
The high accuracy and precision made the developed HPLC method with MGO-CD a suitable alternative for the bioequivalence study of BVC, ESL, and CBZ in human plasma. This developed HPLC-UV method has good efficiency for recoveries and good linearity and is simple to handle. And also, it gave low retention time for the three antiepileptic drugs within 8 min. It provides high efficiency for the extraction of trace-level substances from human plasma.