This work aims the development of an analysis methodology to investigate the dynamic behaviour of steelconcrete composite footbridges. The composite footbridge dynamic response is analysed based on two different strategies. Firstly, the traditional simulation of human walking, without consideration of the pedestrianfootbridge dynamic interaction effect is considered. On the other hand, the effect of the dynamics of the pedestrians while crossing footbridges in crowd situations is analysed and the pedestrian-footbridge dynamic interaction, based on the use of biodynamic models is investigated using a second strategy. The investigated structural system corresponds to an existing pedestrian footbridge built on Ayrton Senna Av. in the city of Rio de Janeiro/RJ, Brazil, with a central span of 68.6m. The footbridge dynamic response was obtained and compared to the limiting values proposed by several authors and design standards. The results indicate that the biodynamic loading models lead to peak accelerations values lower than those produced by the traditional methods. These results provided evidence that the pedestrian-structure dynamic interaction effect should be considered when composite footbridges are subjected to flow of pedestrians.